AQA Chemistry

Question number	Answer	Marks	Guidance
1 (a)	N in Cu(NO ₃) ₂ oxidation state: +5 N in NO ₂ oxidation state: +4 Oxidation product: oxygen	1 1 1	You know Cu is +2 here since the formula of copper(II) nitrate is given to start. Since oxygen is normally -2 and in O ₂ the oxygen is zero, then oxygen must have been oxidised.
1 (b)	[Cu(H2O) ₆] ²⁺ octahedral	1 1	When a transition metal compound is added to water, a hexaaqua complex ion is formed.
1 (c)	Cu(H ₂ O) ₄ (OH) ₂ OR Cu(OH) ₂ [Cu(H2O) ₆] ²⁺ + 2NH ₃ → Cu(H ₂ O) ₄ (OH) ₂ + 2NH ₄ ⁺	1 1	Accept: copper(II) hydroxide since the identity is asked for. Using two equations, this would be: $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow$ $Cu(H_2O)_4(OH)_2 + 2H_2O$
1 (d)	$[Cu(NH_3)_4(H_2O)_2]^{2+}$	1	This is an example of partial ligand substitution.
	deep blue	1	
	$Cu(H_2O)_4(OH)_2 + 4NH_3 → [Cu(NH_3)_4(H2O)_2]^{2+}$ + 2H ₂ O + 2OH ⁻	1	
1 (e)	[CuCl ₄] ²⁻	1	Learn the colours of these transition metal complexes.
	yellow-green	1	
	tetrahedral	1	
1 (f) (i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	1	Remember the 4s electron is lost first.
1 (f) (ii)	a reducing agent	1	

AQA Chemistry

2 (a)	Forms blue or pink precipitate.	1	This sometimes looks lilac.
	Co(H ₂ O) ₄ (OH) ₂	1	Accept: Co(OH) ₂ .
	Precipitate dissolves in excess ammonia.	1	
	Forms yellow or pale brown 'straw' coloured solution.	1	
	[Co(NH ₃) ₆] ²⁺	1	
	Darkens on standing in air.	1	Accept turns brown.
	$[Co(NH_3)_6]^{3+}$ formed.	1	
	Due to oxidation by O_2 in air.	1	
2 (b)	Fe ³⁺ has a larger charge and smaller size than Fe ²⁺ .	9	Fe ³⁺ has a higher charge/size ration scores two marks, or Fe ³⁺ has a higher charge
	The Fe ³⁺ polarises a ligand water molecule to a greater extent.		density scores two marks. However, if you refer to either atoms or molecules and not
	The solution of Fe ³⁺ contains more H+ ions.		ions you lose both marks.
	green precipitate with Fe ²⁺		Accept: more hydrolysis occurs, or Fe ³⁺ weakens the OH bond
	FeCO ₃		
	brown or red/brown precipitate with Fe ³⁺		If you give the hydrolysis equation, then you can get a mark for the equation and then
	[Fe(H ₂ O) ₃ (OH) ₃]		a mark for stating that in Fe ³⁺ the equilibrium lies further to
	Effervescence as carbon dioxide is evolved from the Ee^{3+} reaction		the right.
			Fe^{3+} is more acidic in aqueous solution so it can react with carbonates and give off carbon dioxide (acid + carbonate \rightarrow salt + water + carbon dioxide). The Fe ²⁺ is not acidic enough to react in this way.

AQA Chemistry

3 (a)	Reaction 1		General principles in marking
	ammonia (NH ₃) (solution) / NaOH	1	this question
		0	Square brackets are not essential
	$\begin{bmatrix} Cu(H_2O)_6 \end{bmatrix}^{-1} + 2NH_3 \rightarrow \begin{bmatrix} Cu(H_2O)_4(OH)_2 \end{bmatrix} + 2NH_4^{-1} \\ OR [Cu(H_2O)_6]^{2+} + 2OH^{-} \rightarrow [Cu(H_2O)_4(OH)_2] \\ + 2H_2O \end{bmatrix}$	2	Penalise charges on individual ligands rather than on the whole complex
			Reagent and species can be extracted from the equation Ignore conditions such as dilute, concentrated, excess Reagent must be a compound NOT just an ion Equations must start from $[Cu(H_2O)_6]^{2+}$ except in 4(b) Mark reagent, species and equation independently Do not allow OH ⁻ for reagent Product 1, balanced equation 1 Allow either equation for
			ammonia
3 (b)	Reaction 2		
	Ammonia (conc/xs)	1	
	$ [Cu(H_2O)_4(OH)_2] + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 2H_2O + 2OH^{-} $	2	Product 1, balanced equation 1 Note that the equation must start from the hydroxide $[Cu(H_2O)_4(OH)_2]$
3 (c)	Reaction 3		
	Na ₂ CO ₃ / any identified soluble carbonate / NaHCO ₃	1	Do not allow NaCO ₃ or any insoluble carbonate but mark on
	$\begin{split} & [Cu(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CuCO_3 + 6H_2O \\ & OR \ & [Cu(H_2O)_6]^{2+} + Na_2CO_3 \rightarrow CuCO_3 + 6H_2O + \\ & 2Na^+ \\ & OR \ & 2[Cu(H_2O)_6]^{2+} + 2CO_3^{2-} \rightarrow Cu(OH)_2.CuCO_3 + \\ & 11H_2O + CO_2 \\ & OR \ & with \ & NaHCO_3[Cu(H_2O)_6]^{2+} + HCO_3^- \rightarrow CuCO_3 \\ & + \ & 6H_2O + H^+ \end{split}$	2	Product 1, balanced equation 1
3 (d)	Reaction 4		
	HCI (conc/xs) / NaCl	1	Allow any identified soluble chloride
	$\left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_6\right]^{2+} + 4\operatorname{Cl}^- \to \left[\operatorname{Cu}\operatorname{Cl}_4\right]^{2-} + 6\operatorname{H}_2\operatorname{O}$	2	Product 1, balanced equation 1

AQA Chemistry

4 (0)	Wie CuCl ²⁻	1	
4 (a)		1	
	Yellow-green/yellow/green	1	Not necessary to indicate
			solution
			Do not allow precipitate/solid
	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow CuCl_4^{2-} + 6H_2O$	1	Allow + 4HCl \rightarrow 4H ⁺
4 (b)	X is Cu(H ₂ O) ₄ (OH) ₂	1	Allow Cu(OH) ₂ /copper hydroxide
	Blue precipitate/solid	1	Ignore shades
	$[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$	1	Allow any balanced equation/equations leading to this hydroxide or Cu(OH) ₂
	-		But must use ammonia
4 (c)	Y is $[Cu(NH_3)_4(H_2O)_2]^{2+}$	1	
	Deep/dark/royal blue solution	1	QoL
	$\begin{array}{l} {\rm Cu}({\rm H_2O})_4({\rm OH})_2 + 4{\rm NH_3} \rightarrow {\rm [Cu}({\rm NH_3})_4({\rm H_2O})_2]^{2+} + \\ {\rm 2H_2O} + 2{\rm OH^-} \end{array}$	1	Accept equation for formation from $Cu(OH)_2$
4 (d)	Z is CuCO ₃	1	Allow copper carbonate
	Green solid/precipitate	1	Allow blue-green precipitate
	$[Cu(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CuCO_3 + 6H_2O$	1	
4 (e) (i)	$Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$	1	Allow hydrated ions State symbols not essential but penalise if wrong
	Blue	1	Do not allow description of solids
	Green	1	Allow yellow/(red-brown/orange
4 (e) (ii)	Any two correct points about copper extraction from two of these three categories:	2	
	Any relevant mention of lower energy consumption		Do not allow reference to electricity alone or to temperature alone.
	Any relevant mention of benefits of less mining (of copper ore)		Allow avoids depletion of (copper ore) resources
	Less release of CO_2 (or CO) into the atmosphere		Not just greenhouse gases. Must mention CO_2 or CO